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Lecture 11: Image Coding

Initialize

‡ Read in Statistical Add-in packages:

In[20]:=
Off@General::"spell1"D;
SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø False,

Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

Outline

Last time
Image operations

Point non-linearities, and simple statistics

Using function interpolation for image morphing, symbolic differentiation.

Today
Natural image statistics and efficient coding

Understanding first-order statistics in terms of efficient coding of natural images

Efficient coding: 1rst order statistics & point operations
In 1981, Simon Laughlin published a paper in which he showed that the contrast response function of  LMC interneurons  
("large monopolar cells") of the fly's ommatidium had a sigmoidal non-linearity as shown below. This kind of non-
linearity wasn't new, and is common, especially in sensory response functions. It is a de facto standard point non-linearity 
in generic neural network models. 

But why the sigmoidal shape near the sensory input? The mechanistic explanation for this kind of sigmoidal shape was 
and has been that small signals tend to get suppressed (e.g. a "soft" threshold), and signals get saturated because of biophys-
ical limitations at the high end.

Laughlin came up with a different kind of answer, based on a functional argument that went along the following lines: the 
fly lives in a visual world in which big contrasts (local intensity relative to a global mean) (negative or positive) are less 
common than contrasts near zero, so neurons should devote more of their resolving capacity to the middle contrasts, i.e. 
those near zero. This kind of argument is based on information theory. In this lecture, we'll develop some basic tools of 
information theory to understand his model and others like it.

In image processing jargon, the fly's visual neuron is doing "histogram equalization". Let's see what that means.
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("large monopolar cells") of the fly's ommatidium had a sigmoidal non-linearity as shown below. This kind of non-
linearity wasn't new, and is common, especially in sensory response functions. It is a de facto standard point non-linearity 
in generic neural network models. 

But why the sigmoidal shape near the sensory input? The mechanistic explanation for this kind of sigmoidal shape was 
and has been that small signals tend to get suppressed (e.g. a "soft" threshold), and signals get saturated because of biophys-
ical limitations at the high end.

Laughlin came up with a different kind of answer, based on a functional argument that went along the following lines: the 
fly lives in a visual world in which big contrasts (local intensity relative to a global mean) (negative or positive) are less 
common than contrasts near zero, so neurons should devote more of their resolving capacity to the middle contrasts, i.e. 
those near zero. This kind of argument is based on information theory. In this lecture, we'll develop some basic tools of 
information theory to understand his model and others like it.

In image processing jargon, the fly's visual neuron is doing "histogram equalization". Let's see what that means.

Image calibration
In the next  lectures we are going to study  statistical regularities found in natural images. Efficient coding takes advantage 
of regularities to represent images under some specified optimality constraint, for example with fewer “bits”. 

Precise models of efficient coding depend on carefully calibrated image datasets. Depending on the kind of compression 
(e.g. "lossy"), images like jpeg images have statistical properties that can deviate from the original uncompressed image. 
There exist several carefully calibrated image data sets, such as the "van Hateren" database: http://www.kyb.tuebin-
gen.mpg.de/?id=227.  But the regularities and the means to exploit them efficiently can be illustrated with arbitrary images 
that haven’t been carefully photometrically calibrated.
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Read image file

In[22]:=
graniteg = ImageDataB F;

To manipulate pixel graylevel values, we will do a weighted average of the RGB channels to produce a grayscale image, 
quantized to 256 levels, called granite:

In[23]:=

mg = Max@granitegD;
granite =

RoundB255 * MapB
0.30 Ò@@1DD + 0.59 Ò@@2DD + 0.11 Ò@@3DD

mg
&, graniteg, 82<FF;

H*ArrayPlot is one way to display*L
ArrayPlot@graniteD;

Calculate the max, mean and standard deviation. The standard deviation gives us a measure of contrastiness, without 
normalization by the mean (see previous lecture's definitions of contrast).

By displaying using Image[], Mathematica provides the option of getting information about the image (e.g. histogram), 
editing the image, and filtering it. (Click on the image, then “i”, or  “more”.)

In[26]:=
8width = Dimensions@graniteD@@1DD, mgranite = Max@Flatten@graniteDD,
N@Mean@Flatten@graniteDDD, N@StandardDeviation@Flatten@graniteDDD<

H*Image@D expects 0 to map to black, and 1 to white *L
Image@granite ê N@mgraniteD, Magnification Ø .5D

Out[26]=
8256, 255, 128.657, 46.4504<

Out[27]=

Histogram
Let's calculate some first-order statistics. First-order means that we are looking at the frequency of occurrence of pixel 
intensity values, i.e. the histogram. In the next lecture we'll will look at second-order statistics that describe how pixel 
intensities at one location are related to other ones. 
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Let's calculate some first-order statistics. First-order means that we are looking at the frequency of occurrence of pixel 
intensity values, i.e. the histogram. In the next lecture we'll will look at second-order statistics that describe how pixel 
intensities at one location are related to other ones. 

‡ Define a histogram function that accepts an image with graylevels  [lowlimt,highlimit], and outputs a 

histogram normalized to 1:

In[28]:=
histogram@image_, binsize_, lowlimit_, highlimit_D := Module@8histx<,

histx = BinCounts@Flatten@imageD, 8lowlimit, highlimit, binsize<D;
Return@N@histx ê Plus üü histxDD;

D;

The histogram is normalized so gives us an estimate of pi, the probability of the ith intensity, e.g. the probability of a 
pixel's value being say graylevel 103.

In[29]:=
histograniteimage = histogram@granite, 1, 0, 255D;
ListPlot@histograniteimage, PlotStyle Ø PointSize@0.01DD

Out[30]=
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You can also use built-in histogram functions:
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In[31]:=
GraphicsRowB:Histogram@Flatten@graniteD, ImageSize Ø SmallD,

ImageHistogramB F>F

Out[31]=

What is the frequency of occurrence of graylevel 103?

Confirm that the histogram values add up to 1

Entropy: a measure of information
Entropy provides a scalar measure of the degree of disorder  in an image. "Disorder" isn't necessarily bad because it is 
intuitively related to the degree of novelty or surprise in a pattern. We want a measure of information that reflects degree 
of surprise in a formal objective sense. Surprise in a subjective sense is trickier, because high objective entropy can also 
mean boring.

A highly ordered or regular pattern is by definition somewhat predictable--there is a "pattern there". You might be able to 
predict one part of the pattern from another. Think of pixels making up a gradual ramp in intensity. The pattern is said to 
have redundant information. A pattern can also be predictable because certain elements are just more likely to occur than 
others.  For example, some gray values  in the above histogram are more frequent than other gray values. Or think of 
pixels making up a uniform gray square.

A highly probable event doesn't convey as much information as a low probability event. "I will go to sleep tonight" vs. "I 
will parachute tonight". The second statement conveys more information than the first, because the a priori probability is 
almost 1, so changes little with the new information. 

An event for us will be a pixel taking on a particular graylevel value, say i, where we have a space of 256 possible events. 

‡ Communication and information transmission

We also think of an "event" in this context as a member (a symbol) of an "alphabet" used to send information about a 
signal. So to send information about a picture, I send a series of symbols (each one corresponding to i, where i = 0,1,..255) 
from the alphabet {0,1,..255}.

Intuitively the degree of informativeness is inversely related to the probability of the event. Any monotonic function (such 
as a logarithm) of the reciprocal of probability would preserve a measure of informativeness.

In a classic piece of work done at Bell Labs in the late 1940s, Claude Shannon defined the information of an event i as:

 -Log2 pi = Log2 1 ê pi
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In a classic piece of work done at Bell Labs in the late 1940s, Claude Shannon defined the information of an event i as:

 -Log2 pi = Log2 1 ê pi

This formula satisfies at least one requirement for a measure of information, that it should be monotonically related to the 
degree of surprise.

The base 2 corresponds to a unit of information called a "bit", which thanks to computers is now part of common parlance. 

In[33]:=
Log@2, 1 ê histograniteimage@@127DDD
Log@2, 1 ê histograniteimage@@5DDD

Out[33]=
6.24857

Out[34]=
15.9984

But we have a whole collection of symbols making up the alphabet, so it is also useful to have a measure of the average 
information for the set of symbols given their respective probabilities. Some alphabets may be better than others at effi-
ciently sending information about signals.

Shannon went on to define entropy  as the average (expectation) information over all N events,

So by the definition of expectation (or average):

(1)entropy = -⁄i=1
N pi Log2 pi

If a pixel can take on any graylevel with equal probability, like the noise images you have generated, the entropy is high 
(and in fact maximum). On the other hand, if pixels can take on only one value, entropy is low (and in fact 0). (Entropy for 
a continuous random variable is different-- the entropy doesn' t have a natural lower bound, and the minimum can be 
negative)

Information and entropy are measured in bits for Log base 2. Again, recall that an event for us is a particular graylevel. 

Entropy reflects the amount of information conveyed on average by a set of symbols. A 256x256 gaussian white noise 
image may look boring and unsurprising to you, but a true sample is actually completely novel--you've never seen it 
before, and you'll never see it again (or at least the odds are vanishingly low).

Sometimes probabilities are 0, so we set 0 Log(0) = 0, and then the following function calculates entropy for a list of 
probabilities:

In[35]:=
entropy@probdist_D := Plus üü HIf@Ò == 0, 0.0, -Ò Log@2, ÒDD & êü probdistL

Plus@@list is short-hand for Apply[Plus, list]. They both return the sum of the elements in the list.

If[#==0,0,-# Log[2,#]]& is short-hand for a function to be applied to elements of our list. # is a placeholder for the 
variable that gets plugged in. We could have defined a function: information[p_]:=If[p==0,0,-p Log[2,p]];

/@ is short-hand for Map[]. I.e. we could have done: Apply[Plus, Map[information, probdist]], or even longer, we 
could have written a loop.

We can use our entropy function to verify that the entropy is biggest when the probability distribution is uniform, i.e. when  
pi=1/N. So the maximum entropy for our graylevel pictures would be: entropy[Table[1/256, {256}]] = 8 bits.
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Verify this and calculate: entropy[Table[1/256, {256}]] 

Let's calculate the "first-order" entropy of our grayalpine image:

In[36]:=
entropy@histograniteimageD

Out[36]=
7.41789

Mathematica's built-in function Entropy[] calculates entropy from a list, effectively calculating the histogram for you:

In[37]:=
N@Entropy@2, Flatten@graniteDDD

Out[37]=
7.42209

Find out why the two entropy defintions don’t give exactly the same answer

Use Mathematica's function Entropy[2, <list>] to compare the entropy of {a,b,c,d} with {a,a,c,d}, 
{a,a,a,d}, etc.. Without doing another calculation, what is the entropy of {2,2,15,4}?

Histogram equalization
Suppose we have a set of symbols (e.g. intensity levels called {g}) used to represent an incoming signal. And that some 
levels are much more common than others.

Can we remap these symbols to a new set  in which the new symbols (a new set of levels {f}) are equally probable? I.e. so 
that entropy is maximum?

‡ Theory

In the subsequent analysis, we will initially treat images as having continuous, rather than discrete intensity values. (When 
we calculate entropy, we'll first bin the intensities into 256 bins). Consider for the moment, a large set of images {g(x,y)} 
with continuous intensity values. Suppose that the distribution of intensities was truly gaussian with a particular mean 
graylevel and standard deviation:

pg(g)= 1

2 ps2
e
-

1

2s2
Hg-mL2

. 

If we map f = f(g), we'd get a new set of images {f(x,y)}. What would the histogram look like over this set? The answer 
comes from the density mapping theorem. (See the Probability Overview in Lecture 5) Let's call the new density of f: 
p f H f L. Assume f() is monotonic. The fundamental idea is that probability mass should be conserved, 

(2)p f H f LDf > pg(g)Dg.

What if we want p f H f L=e, a constant over some domain? 
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(3)edf=pgHgL dg, then we integrate both sides to get:

(4)f(g) µ∝ Ÿ-¶
g pgHg 'L „g '

Note that f is exactly proportional to the function given by the cumulative distribution. 

In other words, if we draw a gaussian number, g, and run it through the point-wise non-linearity given by the formula for 
the cumulative gaussian,

(5)f(g) = 1
2
J1 + ErfB g-m

2 s
FN 

f(g) will be uniformly distributed. Thus the function f gives us the mapping rule to convert a non-uniform histogram to a 
uniform one, i.e. to do "histogram equalization" for an image.

(Note that if we use the inverse f -1, we have the means to generate gaussian random variables from uniformly distributed 
ones. See the Exercises section of the ProbabiltyOverview.nb)

‡ Synthetic images: Gaussian white noise (discretized & clipped)

Recall that the "white" in "white noise" means that the pixel intensities are independent of each other. We'll make this 
notion precise in the next lecture when we learn about 2nd order statistics in images. For our purposes here, it just means 
we randomly draw samples for each pixel independent of what any of the previous draws were.

Because a display graylevel is in the range [0,255], we clip the extreme samples using Which[] in the sampling function 
randomguess:

In[38]:=
sigma = 32;
ndist = NormalDistribution@128, sigmaD;
randomgauss := Which@Hr = Random@ndistDL > 255, 1, r < 0, 0, True, rD;
gaussimage = Table@randomgauss, 8i, 1, 256<, 8j, 1, 256<D;
histogaussimage = histogram@gaussimage, 1, 0, 255D;
ListPlot@histogaussimage, PlotStyle Ø PointSize@0.01D, ImageSize Ø SmallD
entropy@histogaussimageD

Out[43]=
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0.002
0.004
0.006
0.008
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0.012

Out[44]=
7.04385
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How does the entropy change if the standard deviation is smaller, say 8, instead of 32?

‡ Non-linearity

The cumulative gaussian is the probability of an intensity  being lower than x. The cumulative gives us the form for the 
non-linearity (i.e. f=y):

In[45]:=
y@x_, m_, s_D := 256 *

1

2
1 + ErfB

x - m

2 s
F ;

(Recall that Mathematica has a built-in add-on function for the cumulative gaussian, so one could also use that.)

If the standard deviation exactly matches that of the gaussian white noise parameters, we can make newgaussimage by 
running the old pixel values through the (sigmoidal point) non-linearity specified by y[] and produce a new image with a 
uniform white noise spectrum:

In[46]:=
newgaussimage = Round@y@gaussimage, 128, 32DD;

In[47]:=
histogaussimage = histogram@newgaussimage, 1, 0, 255D;
ListPlot@histogaussimage, PlotStyle Ø PointSize@0.01D,
PlotRange Ø 80, 0.012<, ImageSize Ø MediumD

entropy@histogaussimageD

Out[48]=
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Out[49]=
7.99118

...now the entropy is near the maximum of Log[2,256] = 8 bits.

Plot up gaussimage and newgaussimage. Which one appears "contrastier"? Which one has the greater 
standard deviation?
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Plot up gaussimage and newgaussimage. Which one appears "contrastier"? Which one has the greater 
standard deviation?

In[72]:=
ArrayPlot@gaussimageD
ArrayPlot@newgaussimageD

Out[72]=

Out[73]=

Image@gaussimageD êê ImageAdjust;
Image@newgaussimageD êê ImageAdjust;

‡ Equalize a natural image: "granite"

We'll first add a tiny bit of Gaussian noise to granite. This is a bit of a fudge, but arguably more realistic, and it gives us a 
larger intensity vocabulary. 

In[52]:=
Clear@randomgaussD;
noise = Table@Random@NormalDistribution@0, 2DD, 8i, 1, width<,

8j, 1, width<D;
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In[54]:=
granite = granite + noise;
granite = 255.0 * granite ê Max@graniteD;
Max@graniteD

Out[56]=
255.

In[57]:=
histogranite = histogram@granite, 1, 0, 255D;
ListPlot@histogranite, PlotStyle Ø PointSize@0.008DD

Out[58]=
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In[59]:=
entropy@histograniteD

Out[59]=
7.40978

Calculate the cumulative distribution from the histogram of granite:

In[60]:=
cumulhistogranite =

256.0 * FoldList@Plus, histogranite@@1DD, histograniteD;
g1 = ListPlot@cumulhistograniteD;

Use ListInterpolation to fit a continuous function to cumulative distribution, and plot up data with function fit.

In[62]:=
fcumulhistogranite = ListInterpolation@cumulhistogranite, 880, 255<<D;

In[63]:=
g2 = Plot@fcumulhistogranite@xD, 8x, 0, 255<, PlotStyle Ø Hue@0.5DD;
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In[64]:=
Show@g1, g2D

Out[64]=
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250

Use cumulative function to re-map intensities:
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In[76]:=
equalgranite = Round@Map@fcumulhistogranite, granite, 82<DD;
ArrayPlot@equalgranite, Mesh Ø False, PlotRange Ø 80, 255<,
ImageSize Ø MediumD

InterpolatingFunction::dmval :
Input value 8-0.211948< lies outside the range of data in

the interpolating function. Extrapolation will be used. à

Out[77]=

As we'd expect, the histogram equalization increases apparent contrast as compared with the original image:

Compare above image with original: ArrayPlot[granite,MeshÆFalse, PlotRangeÆ{0,255}];

Check final histogram and entropy:
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In[78]:=
histoequalgranite = histogram@equalgranite, 1, 0, 255D;
ListPlot@histoequalgranite, PlotStyle Ø PointSize@0.01`D,
PlotRange Ø 80, 0.006<D

Out[79]=
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In[69]:=
entropy@histograniteD
entropy@histoequalgraniteD

Out[69]=
7.40978

Out[70]=
7.99162

(If we had kept our 256 gray-level intensity "vocabulary", the non-linearity leaves out lots of gray-levels in the output. 
Contrast would still be enhanced, but the mapping can actually reduce entropy. A one-to-one re-mapping of labels should-
n't affect entropy at all.)

‡ Does histogram equalization improve image quality?

There used to be a fair amount of research investigating how various forms of histogram equalization might be used to 
improve the visibility of important information in degraded images, such as medical radiograms. The short answer, is that 
histogram equalization does little to help.

Histogram equalization by the fly's eye
Let's return to the sigmoidal non-linearity of photoreceptors found in the fly (and other animals). Laughlin argued that a 
sigmoid non-linearity is  a good design feature to efficiently code the range of light typically found in an  image (Laughlin, 
1981; Richards, 1981; see figure below). The idea is that if you made a plot of the distribution of light intensities in a 
typical scene about some mean level, you might find something like the gaussian distribution shown below.  The granite 
picture intensity histogram wasn't gaussian at all, but it was roughly more peaked in the middle range. Another image, 
actually of granite, is closer to gaussian :
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Let's return to the sigmoidal non-linearity of photoreceptors found in the fly (and other animals). Laughlin argued that a 
sigmoid non-linearity is  a good design feature to efficiently code the range of light typically found in an  image (Laughlin, 
1981; Richards, 1981; see figure below). The idea is that if you made a plot of the distribution of light intensities in a 
typical scene about some mean level, you might find something like the gaussian distribution shown below.  The granite 
picture intensity histogram wasn't gaussian at all, but it was roughly more peaked in the middle range. Another image, 
actually of granite, is closer to gaussian :

HistogramBFlattenBImageDataB FF, ImageSize Ø SmallF;

Even if the intensity values are continuous, the effective resolution of intensity may be limited by a constant amount of 
noise, reducing the effective response discriminability (like quantization). If you wish to divide up the response range 
efficiently, it would make sense to increase the input resolution over the range where you are likely to encounter the more 
frequently occuring intensities. Then the output values representing the extreme regions of the input become more proba-
ble relative to the output values coding the middle range of the input.  Such a strategy could be implemented with  a 
sigmoidal point mapping function as shown in the figure. In fact, the optimal non-linearity would correspond to the 
cumulative probability distribution that we developed above. Or in other words, the fly's light transducer should be 
performing "histogram equalization".

Laughlin was able to show a good correspondence between theory and actual photoreceptor non-linearity in the fly.

The  coding using a non-linear point transformation improves the cell's information transmission capacity. 

Are there ways in which the retina could take advantage of other statistical regularities between the pixels in natural 
images to efficiently encode  image information? Does lateral inhibition have an explanation in terms of efficient coding?

In the next lecture,  we will see how information can be encoded even more efficiently by taking advantage of the regulari-
ties across space and time. To get a glimpse of where we are heading, let's calculate a simple statistic that measures a 
relationship between nearby pixel values.
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Are there ways in which the retina could take advantage of other statistical regularities between the pixels in natural 
images to efficiently encode  image information? Does lateral inhibition have an explanation in terms of efficient coding?

In the next lecture,  we will see how information can be encoded even more efficiently by taking advantage of the regulari-
ties across space and time. To get a glimpse of where we are heading, let's calculate a simple statistic that measures a 
relationship between nearby pixel values.

Visual coding by neural populations in V1: Are natural images special?
When Hubel and Wiesel began their seminal recordings of the responses of neurons in visual cortex to images, they made 
a very important observation: It was really hard to get a neuron to fire. They needed to show the neurons edges of just the 
right orientation and location (See: youtube).

Why are cortical V1 neurons usually so quiet?

It may not seem obvious at first, but we can get a clue by calculating the histograms of the responses to linear difference 
filters to natural image input.

Second order properties: Are images Gaussian?

If images were Gaussian, the joint distributions of pixel intensities could be well fit by: ‰-
1
2
Hx-mL.S-1.Hx-mL, where x is the 

array of pixel intensities, and S is the covariance matrix. 

Suppose our the images in our collection have only 2 pixels. Here’s one possible joint distribution, where the correlation is 
r:

r = -0.4;
ContourPlot@PDF@MultinormalDistribution@8-1, 1<, 881, r 2<, 8r 2, 4<<D,

8x, y<D, 8x, -3, 3<, 8y, -6, 6<, PlotRange Ø All, PlotPoints Ø 25,
ImageSize Ø SmallD

We've seen an example of a single image whose intensity histogram is not gaussian. But natural images are high-dimen-
sional, and it is clear that nearby pixels are not independent. This raises the possibility that even if the first-order statistics, 
as represented in a histogram, were gaussian (as Laughlin observed in his particular images), the higher-order structure is 
not gaussian. Here's an artificial example assuming another collection of 2-pixel images. The joint probability density of x 
and y is:
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We've seen an example of a single image whose intensity histogram is not gaussian. But natural images are high-dimen-
sional, and it is clear that nearby pixels are not independent. This raises the possibility that even if the first-order statistics, 
as represented in a histogram, were gaussian (as Laughlin observed in his particular images), the higher-order structure is 
not gaussian. Here's an artificial example assuming another collection of 2-pixel images. The joint probability density of x 
and y is:

g3@x2_, y2_D := If@Hx2 > 0.0 && y2 >= 0.0L »» Hx2 < 0.0 && y2 < 0.0L,
H1 ê HPiLL * Exp@-.5 * Hx2^2 + y2^2L^2D, 0.0D;

ContourPlot@g3@x1, x2D, 8x1, -2, 2<, 8x2, -2, 2<, ImageSize Ø SmallD

But if you calculate the "marginals", i.e. integrate out one of the variables, say y2, the density is Gaussian. You can 
visualize this by imagining adding up all the values along columns in the above plot.

g3marginal = Table@NIntegrate@g3@x1, x2D, 8x1, -2, 2<D, 8x2, -2, 2, .1<D;
ListPlot@g3marginalD;

‡ Quick check on gaussianity for a natural image

Here is a simple check on "gaussianity" you can apply to any natural image. It is a mathematical fact that the weighted 
sum (or difference) of two independently drawn Gaussian random variables is also a Gaussian. Thus if we compute a new 
image that is a linear combination of pixel intensities in a gaussian image (e.g. as in any convolution), the responses 
should have a gaussian histogram. Let's take a look at the histogram of a simple difference operator on the grayalpine 
image. Here is a discrete approximation of a short vertically oriented "edge detector", or first derivative:

In[81]:=
kern = 881, -1<<

Out[81]=
881, -1<<
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In[82]:=
diffgranite = ListConvolve@kern, graniteD;
ArrayPlot@diffgranite, ImageSize Ø MediumD

Out[83]=

In[84]:=
empiricalhistg = ListPlot@histogram@diffgranite, 1, -256, 255D,

PlotRange Ø 88200, 300<, 80, 0.06<<, Joined Ø True, AxesOrigin Ø 8256, 0<,
ImageSize Ø SmallD

Out[84]=
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This histogram is strikingly regular (compared with the intensity histogram), with a fairly sharp peak and long tails. The 
histogram is said to have large "kurtosis".

You can try to fit this with a Gaussian, but you will discover that the tails of the distribution are too extended for a Gaus-
sian. 

It turns out that most natural images when filtered with a spatial filter whose area sums to zero (i.e. has as much positive as 
negative weight, as in the center-surround filters we've studied) produces a neural image with high kurtosis. 

An interesting neural interpretation is that such a neural code produces sparse responses, i.e. there are a few units with 
really big responses, but most responses huddle near the mean (which is zero). David Mumford has called this the "blue 
sky effect". But there is more to the story which you can read about in: Simoncelli, E. P., & Olshausen, B. A. (2001), and 
Simoncelli (1999, 2003).

The take-home message is that: most natural images are non-Gaussian.

18 11.CodingEfficiency.nb



This histogram is strikingly regular (compared with the intensity histogram), with a fairly sharp peak and long tails. The 
histogram is said to have large "kurtosis".

You can try to fit this with a Gaussian, but you will discover that the tails of the distribution are too extended for a Gaus-
sian. 

It turns out that most natural images when filtered with a spatial filter whose area sums to zero (i.e. has as much positive as 
negative weight, as in the center-surround filters we've studied) produces a neural image with high kurtosis. 

An interesting neural interpretation is that such a neural code produces sparse responses, i.e. there are a few units with 
really big responses, but most responses huddle near the mean (which is zero). David Mumford has called this the "blue 
sky effect". But there is more to the story which you can read about in: Simoncelli, E. P., & Olshausen, B. A. (2001), and 
Simoncelli (1999, 2003).

The take-home message is that: most natural images are non-Gaussian.

‡ Can the above empirical distribution of differences be fit by a Gaussian, a Laplacian?

In[85]:=
PDF@LaplaceDistribution@u, bD, xD

Out[85]=
‰
-
x-u
b

2 b
x ¥ u

‰
-
-x+u
b

2 b
True

In[86]:=
Manipulate@
theoreticalhistg = Plot@PDF@LaplaceDistribution@257, scaleD, xD,

8x, 200, 300<, PlotStyle Ø 8Red, Thick<, PlotRange Ø FullD;
Show@8theoreticalhistg, empiricalhistg<, ImageSize Ø SmallD,
8scale, 5, 25<D

Out[86]=

scale

220 240 260 280 300

0.02

0.04

0.06

0.08

0.10

If not, try the generalized laplace distribution, with a p value between 0.5 and 0.8 (Simoncelli, 1999):
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In[87]:=
pdf@x_, s_, p_D := Exp@-Abs@x ê sD^pD ê HGamma@1 ê pD * 2 * s ê pL
pdf@x, s, pD

Out[88]= ‰
-AbsB

x
s
F
p
p

2 s GammaB 1

p
F

Plot the histogram for a center-surround filtered natural image

In[89]:=
kern = 880, -1, 0<, 8-1, 4, -1<, 80, -1, 0<<;
diffgranite = ListConvolve@kern, graniteD;

Plot a difference histogram for a random gaussian fractal image

The next lecture shows how to introduce simple correlations in an image using a fractal model. 

‡ Initialize gaussianfractalimage by executing the following cell

ArrayPlot@gaussianfractalimage, Mesh Ø False, Frame Ø FalseD
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Even tho' the above image isn't white gaussian noise, the pixels are a reasonable sample from a gaussian. 
If indeed true, then a linear combination of its pixels should still be gaussian. Check this out using one of 
the above difference kernels.

Next time
Efficient coding: 2nd order statistics and area-based operations

Lateral inhibition does "predictive coding"

Cortical wavelet-like basis sets: sparse, distributed representation that "decorrelates"

Color Trichromacy: decorrelation by principal components analysis

Appendices

Breaking an image into a series of subimages

‡ One can use ImagePartition, as illustrated in the Mathematica documentation:

ImagePartitionB , 16F êê Grid

‡ One can also use more basic functions as illustrated below.

‡ The input 64x64 image: face

Get dimensions of face

width = Dimensions[face][[1]]; hsize = width/2;
height = Dimensions[face][[2]];
(* Short[face,1 check out the first few lines*)
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Scale so image ranges from 0 to 255.

a = 255 ê HMax@faceD - Min@faceDL; b = -a Min@faceD;
face256 = a face + b;

Scale face so that the average value is zero, and the r.m.s. contrast is 1:

tempm = Mean@Flatten@faceDD;
tempsd = StandardDeviation@Flatten@faceDD;
face = Hface - tempmL ê tempsd;

nregions = 4;
swidth = width ê nregions;

subface = Table@Take@face256, 8i * swidth + 1, i * swidth + swidth<,
8j * swidth + 1, j * swidth + swidth<D, 8i, 0, nregions - 1<,

8j, 0, nregions - 1<D;
Dimensions@subfaceD

8Image@subface@@1, 1DDD êê ImageAdjust,
Image@subface@@1, 2DDD êê ImageAdjust,
Image@subface@@2, 1DDD êê ImageAdjust,
Image@subface@@2, 2DDD êê ImageAdjust<

9 , , , =
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‡ Using Raster[ ]

Show@Graphics@Raster@0.5 faceDD, AspectRatio Ø 1, ImageSize Ø SmallD

‡ Exporting images

Export["granite64x64.tif",granite,"TIFF"];

‡ Find the positions of the Max and Min of a list:

argmax@x_D := Position@x, Max@xDD@@1, 1DD;
argmin@x_D := Position@x, Min@xDD@@1, 1DD;
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